
Electron First Step

2025年 10月 16日

概要
Electronを利用して、デスクトップアプリケーションを作ろう

目次
1 はじめに 3

1.1 読み間違えないでね . 3

1.2 注意 . 3

2 Electronとバージョンアップ 4

3 Electronのインストール 4

3.1 homebrewのインストール . 4

3.2 Node.jsのインストール . 4

3.3 Electronのインストール . 4

4 とりあえず起動してみる。 5

5 やっぱり　”Hello World” 5

5.1 作業用フォルダとパッケージファイルの作成 . 5

5.2 package.json . 6

5.3 main.js . 6

5.4 index.html . 7

5.5 実行してみよう . 8

5.6 cssを追加してみよう . 9

6 時計作るぞ！ 9

6.1 作業用フォルダとパッケージファイルの作成 . 9

6.2 package.json . 10

6.3 main.js . 10

6.4 index.html . 10

6.5 clock.js . 11

6.6 透過ウィンドウへの変更 . 12

6.7 css/clock.cssの追加 . 12

6.8 cssの調整 . 13

1

7 アプリケーションとして配布できるようにしよう 14

7.1 これまで . 14

7.2 electron-builder . 14

7.3 package.json . 14

7.4 build . 14

7.5 セキュリティについて . 15

8 まとめ 15

2

1 はじめに
1.1 読み間違えないでね

ソースコード 1 読み間違えないでね
1 数字：0123456789

2 小文字：abcdefghijklmnopqrstuvwxyz
3 大文字：ABCDEFGHIJKLMNOPQRSTUVWXYZ
4

5 1：イチ
6 l：小文字のエル
7 i：小文字のアイ
8 !：ビックリマーク
9 |：バーティカルバー。Shiftと￥を押したもの。

10

11 0：ゼロ
12 o：小文字のオー
13 O：大文字のオー
14

15 .：ピリオド
16 ,：コンマ

1.2 注意
• これから出てくるソースコードには、左に「行番号」と呼ばれる番号が出てくるけど、入力する必要
ないからね。

• scriptタグの中で「//」で始まる文は、コメントで、プログラムは読み飛ばすよ。
• コピーできるところはコピーして効率よく入力して行こう
• 徐々に追加されていくから、量が多く見えるけど、平気だよ！
• 改行されていても、行番号が書かれていないところは、1 行だからね。表示上改行されて見えてる
だけ

3

2 Electronとバージョンアップ
どんどんバージョンアップされています。昨年バージョンがうまく動かなくなったり等のことがよくアプ
リ開発では起きますので、そういうものだと思っておきましょう。
主な理由は、セキュリティ周りの仕様変更となります。2年連続で動かなくなりました。

3 Electronのインストール
ちょっとややこしいのですが、パッケージ管理システムを複数利用してインストールします。

Homebrew mac用のパッケージ管理システム
npm node.js用のパッケージ管理システム

1. Homebrewのインストール
2. brewを使って Node.jsのインストール
3. npmを使って Electronのインストール

3.1 homebrewのインストール
https://brew.sh/

にアクセスして、インストールと書いてある行をコピーしましょう。ターミナルを開いてペーストしてリ
ターンしましょう。
XCode CommandLine Tool のインストールを聞かれた場合、メッセージに応じてタイピングしてくだ
さい (多分リターンキーで OK)

3.2 Node.jsのインストール
引き続いてターミナルで

$ brew install node

としましょう。
エラーっぽいのが出てきた場合には、そのメッセージに応じて対応しましょう。

• npm audit fix

• npm audit fix –force

等を求められたりします。

3.3 Electronのインストール
引き続いてターミナルで

$ npm install electron -g

4

としましょう。

4 とりあえず起動してみる。
ターミナルで

$ electron

としてみましょう。
次のようなウィンドウが立ち上がれば正解です。
終了するには、ターミナル上で Ctrl-Cとします。

5 やっぱり　”Hello World”

Hello Worldと表示するアプリケーションを作ってみましょう。

5.1 作業用フォルダとパッケージファイルの作成
今日の作業用のフォルダを「AID06」として作成しましょう。その中に「HelloWorld」というフォルダ
を作成しましょう。
ターミナルで$の後に”cd ”と入力した後に、作成した HelloWorldフォルダをドラッグアンドドロップし
ましょう。すると、

cd /Users/sammy/Desktop/AID/AID06/HelloWorld

のようになるので、リターンを押しましょう。

npm init -y

とすることで package.jsonというファイルが作成されるはずです。VSCodeで「HelloWorld」フォルダを
開きましょう。

5

5.2 package.json

アプリ作成に必要な設定ファイルです。

”main”: ”index.js”,

と書いてある行を

”main”: ”main.js”,

と変更しましょう。一番最初に起動するファイルが書かれています。
Electronとしては、文化的に「main.js」とするようです。次に、

"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"

},

と書いてあるところを

"scripts": {

"test": "echo \"Error: no test specified\" && exit 1",

"start": "electron ."

},

としましょう。
保存を忘れずに！

5.3 main.js

それでは新規ファイルで main.jsを作成してみましょう。

ソースコード 2 Hello World：main.js

1 const { app, BrowserWindow } = require(’electron/main’)

2

3 //ウインドウの作成
4 const createWindow = () => {

5 const win = new BrowserWindow({

6 width: 400,

7 height: 400,

8 webPreferences: {

9 nodeIntegration: true,

10 contextIsolation: false,

11 },

12 })

13 // webPreferencesでメインプロセスとレンダラープロセスの通信をできるようにセキュリティ下げてる
14

15 // はじめにロードするファイルをindex.htmlに設定
16 win.loadFile(’index.html’)

6

17

18 // ウィンドウ閉じられた時の挙動
19 win.on(’closed’, ()=>{

20 app.quit();

21 })

22 }

23

24 // electronの準備ができた時の挙動。基本、createWindow()を呼び出す
25 app.whenReady().then(() => {

26 createWindow()

27

28 // electronがアクティブになった時
29 app.on(’activate’, () => {

30 if (BrowserWindow.getAllWindows().length === 0) {

31 createWindow()

32 }

33 })

34 })

35

36 // ウィンドウが全部閉じられた時の挙動
37 app.on(’window-all-closed’, () => {

38 if (process.platform !== ’darwin’) {

39 app.quit()

40 }

41 })

保存を忘れないくださいね。

5.4 index.html

17行目でウィンドウに表示する内容として「index.html」とされています。これを作成してみましょう。
ソースコード 3 Hello World：index.html

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <meta charset="UTF-8" />

5 <!-- セキュリティ回避 -->

6 <meta http-equiv="Content-Security-Policy"

7 content="script-src ’self’ ’unsafe-inline’; style-src ’self’ ’unsafe-inline

’;">

8 <title>Hello from Electron renderer!</title>

9 <link rel="stylesheet" href="css/style.css">

10 </head>

11 <body>

12 <h1>Hello from Electron renderer!</h1>

13 <p>

14 We are using node

15 <script>document.write(process.versions.node)</script>,

7

16 </p>

17 <p>

18 Chrome

19 <script>document.write(process.versions.chrome)</script>,

20 </p>

21 <p>

22 and Electron

23 <script>document.write(process.versions.electron)</script>

24 </p>

25

26 </body>

27 </html>

• procdess.versions.node

は Node.jsで定義されていて

• procdess.versions.chrome

• procdess.versions.electron

は、Electronで拡張された機能となります。
metaタグにてセキュリティの程度をゆるめています。cssファイルはまだないですが、link先に指定し
ています。

5.5 実行してみよう
ターミナルで

npm start

とすると、ウィンドウが次のよう表示されるはずです。(あ、この画像すでに cssついてる...気にしない...)

また、Dockで Electronのアプリ、として起動していることも確認しましょう。
ちょっと説明します。package.jsonで

"scripts": {

"test": "echo \"Error: no test specified\" && exit 1",

"start": "electron ."

8

},

としたため、”npm start”と入力すると、この start部分が呼ばれて、”electron .”が実行されるわけです。
”electron .”は、このフォルダの中で electronを実行せよ、という意味になります。
メニューから終了しましょう。

5.6 cssを追加してみよう
「HelloWorld」フォルダの中に「css」フォルダを作り、その中に「style.css」を作成してみましょう。
style.cssを以下のようにしましょう。

ソースコード 4 Hello World：css/style.css

1 h1 {

2 border-left: 10px solid red;

3 border-bottom: 1px solid red;

4 padding-left: 10px;

5 }

6 p {

7 margin: 4px;

8 }

もう一度ターミナルで「npm start」で実行してみましょう。反映されてますね。Webと変わらず CSSファ
イルも利用することができることがわかりました。
ついでに Option+Command+I をすると、デベロッパーツールが使えることがわかります。We-

bkit(chrome で利用している blink も webkit の派生) の技術を使っているため、ほとんどブラウザと
同じ、ということになります。
Command-Qで終了できますが、ターミナルに$マークが見えてない場合には、きちんと終了できていな
いため、Ctrl-Cで終了することを覚えましょう。

6 時計作るぞ！
6.1 作業用フォルダとパッケージファイルの作成
「AID06」の中に「DigitalClock」というフォルダを作成しましょう。
ターミナルで$の後に”cd ”と入力した後に、作成した DigitalClockフォルダをドラッグアンドドロップ
しましょう。すると、

cd /Users/sammy/Desktop/AID/AID06/DigitalClock

のようになるので、リターンを押しましょう。

npm init -y

とすることで package.json というファイルが作成されるはずです。VSCodeで「DigitalClock」フォルダ
を開きましょう。

9

6.2 package.json

アプリ作成に必要な設定ファイルです。

”main”: ”index.js”,

と書いてある行を

”main”: ”main.js”,

と変更しましょう。一番最初に起動するファイルが書かれています。
繰り返しになりますが、Electronとしては、文化的に「main.js」とするようです。次に、

"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"

},

と書いてあるところを

"scripts": {

"test": "echo \"Error: no test specified\" && exit 1",

"start": "electron ."

},

としましょう。
保存を忘れずに！

6.3 main.js

HelloWorldのものをそのまま複製しましょう。

width: 400,

height: 400,

を

width: 200,

height: 100,

に変更しておきましょう。

6.4 index.html

新規ファイルとして作成しましょう。

ソースコード 5 DigitalClock：index.html

1 <!DOCTYPE html>

2 <html>

3 <head>

10

4 <meta charset="UTF-8" />

5

6 <!-- セキュリティ回避 google font利用できるように追加-->
7 <meta http-equiv="Content-Security-Policy"

8 content="script-src ’self’ ’unsafe-inline’; style-src ’self’ ’unsafe-inline’

https://fonts.googleapis.com; font-src ’self’ https://fonts.gstatic.com;">

9

10 <title>Hello from Electron renderer!</title>

11 <link rel="stylesheet" href="css/style.css">

12 </head>

13 <body>

14 <div id="digital_clock"></div>

15 <script src="clock.js"></script>

16 </body>

17 </html>

6.5 clock.js

前の 9行目で clock.jsが呼び出されているため、それを作成しましょう。
ソースコード 6 DigitalClock：clock.js

1 // 時計の描画処理をスタート
2 clock();

3

4 function clock () {

5 // 現在日時を取得
6 let d = new Date();

7

8 // デジタル時計を更新
9 updateDigitalClock(d);

10

11 // 次の「0ミリ秒」に実行されるよう、次の描画処理を予約
12 let delay = 1000 - new Date().getMilliseconds();

13 setTimeout(clock, delay);

14 }

15

16 function updateDigitalClock (d) {

17 const AA_str = ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"];

18 let YY = d.getFullYear().toString().slice(-2);

19 let MM = d.getMonth() + 1;

20 let DD = d.getDate();

21 let AA = d.getDay();

22 let hh = d.getHours();

23 let mm = d.getMinutes();

24 let ss = d.getSeconds();

25

26 // 桁あわせ
27 if(MM < 10) { MM = "0" + MM; }

11

28 if(DD < 10) { DD = "0" + DD; }

29 if(hh < 10) { hh = "0" + hh; }

30 if(mm < 10) { mm = "0" + mm; }

31 if(ss < 10) { ss = "0" + ss; }

32

33 let text = YY + ’/’ + MM + ’/’ + DD + ’ (’ + AA_str[AA] + ’)
’ + hh + ’:’

+ mm + ’:’ + ss;

34 document.getElementById("digital_clock").innerHTML = text;

35 }

「npm start」でとりあえず、時計が動いていることがわかると思います。

6.6 透過ウィンドウへの変更
main.jsの win=new BrowserWindow部分を以下のように 3行追記しましょう。

ソースコード 7 DigitalClock：main.js

1 win = new BrowserWindow({

2 width: 200,

3 height: 100,

4 transparent: true, // ウィンドウの背景を透過
5 frame: false, // 枠の無いウィンドウ
6 resizable: false, // ウィンドウのリサイズを禁止
7 webPreferences: {

8 nodeIntegration: true, //Electron6から必要らしい
9 contextIsolation: false, //Security的には良くないらしいが...

10 }

11 })

6.7 css/clock.cssの追加
このままだと、ドラッグも何もできないため、背景を CSSでいじりましょう。cssフォルダを作成してそ
の中に clock.cssを追加します。
index.htmlで css/clock.cssのリンク追加を忘れないように!

ソースコード 8 DigitalClock：css/clock.css

1 body {

2 background-color: rgba(24, 24, 24, .7);

3 color: #fff;

4 -webkit-app-region: drag;

5 -webkit-user-select: none;

6 user-select: none;

7 }

ちょっと説明します。

背景色/背景画像 透過ウィンドウでは「何もない部分」はクリック出来ないため、背景を指定し
ます rgba(r, g, b, a)による色指定を行うことで、透明度を持った背景色が指定できます

12

-webkit-app-region: drag; 要素をウィンドウのタイトルバーのように扱う指定ですいずれかの
要素にこの指定を行わないと、ドラッグによるウィンドウ移動が出来ません

-webkit-app-region: no-drag; drag を指定した要素内にボタンなど操作可能な要素を配置する
場合、no-dragを指定して上書きします

-webkit-user-select: none; テキストの選択を無効化します主にインタフェース部分に指定します

-webkit-となっているのは「ベンダープレフィックス」と言って、Webkit(派生の blinkも)のみで利用で
きる CSSとなっています。
index.htmlから cssファイルへのリンクを忘れないようにしましょう。

6.8 cssの調整
見た目をさらに調整するために、以下のようにしましょう。

ソースコード 9 DigitalClock：css/clock.css

1 @import url(’https://fonts.googleapis.com/css2?family=Iceland&display=swap’);

2

3 body {

4 overflow: hidden;

5 margin: 0;

6 padding: 0;

7 border: 5px solid rgb(42,42,42);

8 background-color: rgba(24, 24, 24, .7);

9 box-shadow: 0 0 8px 3px #000 inset;

10 color: #fff;

11 -webkit-app-region: drag;

12 -webkit-user-select: none;

13 user-select: none;

14 }

15

16 #digital_clock {

17 font-family: "Iceland", sans-serif;

18 font-size: 25px;

19 line-height: 40px;

20 margin-top: 9px;

21 text-align: center;

22 color: #fff;

23 text-shadow: 1px 1px 3px #000;

24 }

@import文は、Google Fontsというサービスを利用して、フォントを利用できるようにしています。
詳しくは

https://saruwakakun.com/html-css/basic/google-fonts https://peraichi.com/univ/20220502

をみましょう。

13

7 アプリケーションとして配布できるようにしよう
7.1 これまで
ターミナルで「 npm start」で起動してるので、アプリケーションっぽいんだけど、アプリケーションっ
ぽくないですね。配布できるようにしましょう。

7.2 electron-builder

ターミナルで

npm install -D electron-builder

としてください。1分くらいかかりますが、「node modules」というフォルダが増えましたね。
後、アプリ作るのに、node modulesの中に必要っぽいので

npm install -D electron

もしましょう。

7.3 package.json

"devDependencies": {

"electron": "^38.2.2",

"electron-builder": "^26.0.12"

}

の後に (バージョン情報は変わる可能性あり)以下のように 6行追記してください。「,」を忘れずに

"devDependencies": {

"electron": "^38.2.2",

"electron-builder": "^26.0.12"

},

"build": {

"appId": "jp.test.app1",

"mac": {

"target": "dmg"

}

}

7.4 build

実際にファイルを構築することをビルド、と言います。
ターミナルで

14

./node_modules/.bin/electron-builder --mac --universal

としましょう。うまくいけば、distフォルダができて、その中に配布用の dmgファイルができるはずです。
macには Intel, AppleSilicon の二つの種類の CPUがありますが、そのどちらでも動くアプリケーショ
ンを作成するために「–universal」としています。
windowsの場合には次を参考にしてください。(うまく行くかな...)

https://maku.blog/p/2tcs8n2/

7.5 セキュリティについて
アプリ開発時にはセキュリティについて考慮する必要があります。今回のサンプルでは煩雑になるため手
抜きしています。詳しくは次を参考にしてください。

https://gist.github.com/umamichi/5d52367235c98425e9d3fa4439d35046

https://zenn.dev/sprout2000/books/6f6a0bf2fd301c/viewer/13340

8 まとめ
これまで学んできた、Canvas,WebGLも JavaScriptなわけですから、Electronを利用することでアプ
リケーションを開発することができたのが理解できたでしょうか？

アイコンを変更したり、メニューバーを改造したり、普通のアプリ開発で必要なことは相当できるみたい
です。
興味を持った人は、以下をみてみましょう。
https://qiita.com/nyanchu/items/9a1c910bbca55e9d2f3c

また、アナログ時計を作ってみたい人は、以下のページを見てみてください。
https://qiita.com/Yuta spade/items/2493c05cd868ea5f2677

P.S.

バージョンアップすると、動かなくなるから、それの対処方法に今年も少しハマったー

以上

15

